Nanomechanics of Silicon Nanowires via Symmetry-adapted Tight-binding and Classical Objective Molecular Dynamics

نویسنده

  • Traian Dumitrică
چکیده

Stability and elastic response of the most promising ground state candidate Si nanowires with less than 10 nm in diameter are comparatively studied with objective molecular dynamics coupled with non-orthogonal tight-binding and classical potential models. The computationally-expensive tight-binding treatment becomes tractable due to the substantial simplifications introduced by the presented symmetry-adapted scheme. Quantitative differences regarding stability with the classical model description are noted. Using a Wulff energy decomposition approach it is revealed that these differences are caused by the inability of the classical potential to accurately describe the interaction of Si atoms on surfaces. Differences between the results of the two atomistic treatments are also noted in the elastic response in elongation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of polycrystalline and wurtzite Si nanowires via symmetry-adapted tight-binding objective molecular dynamics.

The stability of the most promising ground state candidate Si nanowires with less than 10 nm in diameter is comparatively studied with objective molecular dynamics coupled with nonorthogonal tight-binding and classical potential models. The computationally expensive tight-binding treatment becomes tractable due to the substantial simplifications introduced by the presented symmetry-adapted sche...

متن کامل

Nanomechanics of silicon nanowires

The stability and elasto-mechanical properties of tetragonal and cagelike or clathrate nanowires of Si are investigated and compared using molecular dynamics simulations. Our results show that cagelike nanowires, while possessing lesser density, are able to maintain their structural integrity over a larger range of strain conditions than the tetrahedral nanowires, making them a better candidate...

متن کامل

Atomistic Analysis of Thermoelectric Properties of Silicon Nanowires

The spds-spin-orbit-coupled tight-binding model and linearized Boltzmann transport theory is applied to calculate the electrical conductivity, the Seebeck coefficient, and the power factor of silicon nanowires (NWs) with diameters D<12nm. Using experimentally measured values for the lattice thermal conductivity we estimate the room temperature thermoelectric figure of merit to be ZT~1. Keywords...

متن کامل

Thermoelectric Properties of Scaled Silicon Nanostructures Using the spds*-SO Atomistic Tight-Binding Model

The progress in the synthesis of nanomaterials allows the realization of low-dimensional thermoelectric devices based on 1D nanowires (NWs) and 2D superlattices. These confined systems offer the possibility of partially engineering the electronic and phononic dispersions and scattering mechanisms. Thus, the electrical and thermal conductivity, and the Seebeck coefficient can be designed to some...

متن کامل

Subband Structure of Silicon Nanowires from the Hensel-Hasegawa-Nakayama Model

The subband structure of nanowires is commonly obtained through an atomistic tight binding approach. In this work an alternative, continuum based method is investigated, namely a two-band k ·p approximation of the conduction band structure. A derivation of the subband Schrödinger equations from the bulk model and their numerical solution are presented for [100] nanowires. Self-consistent simula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008